S5 MATHEMATICS HOLIDAY PACKAGE TEST (100 MARKS)

SECTION A: Answer all questions in this section.	[55marks]
1. The sum (S_n) of the first <i>n</i> terms of the arithmetic progression is	[2marks]
a. $\frac{n}{2}(u_n - u_1)$	
b. $\frac{n}{2}(u_1 + du_n)$	
c. $\frac{n}{2}(u_1 + u_n)$	
d. $\frac{n}{2}(2u_1 + u_n)$	
2. Newton Raphson method for solving equation by numerical method is	[2marks]
a. $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$	
b. $x_{n-1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
c. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
d. $x_{n-1} = x_n + \frac{f(x_n)}{f'(x_n)}$	
3. The magnitude of $\vec{v} = (x, y, z)$ is	[2marks]
a. $\sqrt[3]{x^2 + y^2 + z^2}$	
b. $x^2 - y^2 + z^2$	
c. $\sqrt{x^2 + y^2 - z^2}$	
d. $\sqrt{x^2 + y^2 + z^2}$	
4. Choose the arithmetic progressions from the options below:	[4marks]
a. 2, 4, 8, 10, 16,	
b. 17, 14, 11, 8,	
c. 2, 6, 10, 14,	
 d24. 6. 8 5. Select two intervals in which the roots of x² - 3x + 1 = 0 are located: 	[4marks]
a. $]0,1[$	[Tillal KS]
b.]3,4[
c.]1,2[
d.]2,3[
6. The tangent function $tan(x)$ has	
a. Domain =?	[2marks]
b. Range =?	[1mark]
7. Write True if the statement is correct or False otherwise:	
a. $f(x) = \frac{x + \sin x}{x^2}$ is even function	[2marks]
b. $g(x) = \frac{1 - \cos^3 x}{\sin^2 x}$ is odd	[2marks]
8. The value of x if $\tan\left(x + \frac{\pi}{2}\right) = 1$ is:	[3marks]
a. $-\frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$	
b. $\frac{\pi}{3} + \pi k, k \in \mathbb{Z}$	

Page **1** of **3**

- c. $-\frac{\pi}{4} + 2\pi k, \ k \in \mathbb{Z}$
- d. $\frac{\pi}{6} + 2\pi k, k \in \mathbb{Z}$

9. A. Select all trigonometric functions from the list below

- i. y = sin2x
- ii. $y = \csc^{-1} 2x$
- iii. $y = \sec^{-1} 2x$
- iv. $y = \tan x$

B. Match the function with its corresponding derivative

[3marks]

[3marks]

[4marks]

[2marks]

[2marks]

Functions	Derivative		
a. $\cos^{-1} x$	1. $\frac{1}{1+x^2}$		
b. $\tan^{-1} x$	2. $\frac{-1}{\sqrt{1-x^2}}$		
c. $\sec^{-1} x$	3. $\frac{1}{x\sqrt{x^2-1}}$		

10. The best solution of the equation: $\log_2(x + 3) - \log_2 x = 1$ is

a. x = 3

- b. *x* > 3
- c. x > 0
- d. *x* < 3

11. The 2 best solutions of $2sinx + \sqrt{3} = 0$ in the interval $[0, 2\pi]$ are

- a. $\frac{\pi}{3} + 2\pi k$
- b. $\frac{4\pi}{3} + 2\pi k$
- c. $\frac{\frac{3}{2\pi}}{6} + 2\pi k$

d.
$$\frac{5\pi}{3} + 2\pi k$$

12. Evaluate $\lim_{x \to 0} \frac{\sin^{-1}x^2}{(\sin^{-1}x)^2}$ [5marks] 13. The function of y = 3sinx + 2 has

a. The maximum value at y =?b. The minimum value at y =?

[2marks]

14. It is given that the initial population of a city p_o is 10000 people; the exponential growth rate (r) is 3% per year, t is the time in years and p_t is the population at timet. Create the population growth model of the given data and hence, estimate the population after 5 years. [5marks]

15. The 3rd term and 8th term of arithmetic progression are 5 and 15 respectively, find

a. The common difference[2marks]b. The 1st term[1marks]c. The sum of the first 20 terms[2marks]SECTION B: ATTEMPT ONLY THREE QUESTIONS OF YOUR CHOICE[45MARKS]16.A. By using determinant method Show that
$$\vec{u} = (1, 2, 3), \vec{v} = (0, 1, 2)$$
 and $\vec{w} = (0, 0, 1)$ are linearly
independent[5marks]

B. Find the volume of the tetrahedron whose vertices are A(2, -1, -3), B(4, 1, 3), C(3, 2, -1) and D(1, 4, 2)[10marks]

Page 2 of 3

- 17.
- **a.** Use factorization, simplification and hospital rule to show that $\lim_{x\to 0} \frac{x^2 \sin^2 x}{x^2 x \sin x} = 2$ [8marks]
- b. A circle of radius 3m is divided into many parts , one part is considered only and the angle θ between two radii is 15⁰.as shown below .Find the area of the figure below **[7marks]**

18.

a. Evaluate the exact value of tan 75 ⁰ using trigonometric identity b. solve the trigonometric equation for $0 \le x \le 2\pi$:	[5marks]
sin2x + cosx = 0	[5marks]
c. Find the derivative of $y = tan^{-1}\left(\frac{x-1}{x+1}\right)$ with respect to x	[5marks]
19.	
a. express <i>cos</i> 4 <i>x</i> in terms of <i>cosx</i> only	[6marks]
b. solve the inequality for $0 \le x \le 360$	
$cosx > \frac{1}{2}$	[6marks]
c. Ferris wheel with a radius of 10metres at a constant speed, if a rider starts at	the bottom and
their height $h(t)$ (in meters) at time t (in seconds) is modeled by :	
$h(t) = 10 - 10\cos(\frac{\pi}{15}t)$	
Find the rider's height at $t = 10$ seconds.	[3marks]

20. In KABEZA village , after her 9 observations about farming , UMULISA saw that in every house observed, where there are a number x of cows there also y domestic ducks, and then she got the following results :

		0							
					5				
Y	4	8	4	12	10	14	16	6	18

- a. Represent this information graphically in scatter diagram
- b. Find regression line equation *y* on *x* and estimate the number of domestic ducks when the the number of cows is 12 **[6marks]**
- c. Find correlation coefficient between the variation of the number of cows and the number of domestic ducks and comment on it.
 [4marks]

GOOD LUCK!!!

[5marks]